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In the present study, we investigate the sensitivity of global instability in weakly and fully nonlinear
regimes using the supercritical Ginzburg–Landau equation. In the weakly nonlinear regime, the
sensitivity of global instability is determined by linear global mode and its adjoint mode, and the
variation of sensitivity with the departure from the criticality does not change. On the other hand,
it is shown that in the fully nonlinear regime, the sensitivity of global instability is characterized by
nonlinear global mode and adjoint mode of secondary-instability equation, and the Kolmogorov
front acts as a wavemaker of nonlinear global mode. The sensitive region of nonlinear global mode
in the fully nonlinear regime is similar to that of linear global mode in the weakly nonlinear regime,
but this Kolmogorov front layer becomes less sensitive to the perturbation as the departure from the
criticality increase. © 2008 American Institute of Physics. �DOI: 10.1063/1.2952010�

Transition to turbulence is one of the important phenom-
ena in fluid dynamics. In some flows, transition arises
through the global instability. Kármàn vortex shedding be-
hind a bluff body, Rayleigh–Bérnard cell in a cross flow, and
self-sustained oscillation in hot jet are well-known examples
of global instability. Thus, the bifurcation of global instabil-
ity has been extensively investigated in theoretical
studies.1–14 Quite many flows having the global instability
undergo bifurcation through linear global instability. In this
case, when the bifurcation parameters �e.g., the Reynolds
number and velocity ratio for mixing layer� exceed critical
values, disturbances grow exponentially due to unstable lin-
ear global mode. When the disturbances reach finite ampli-
tude, the growth rate is attenuated by stabilizing nonlinearity.
Finally, the disturbances are saturated to a specific self-
sustained nonlinear structure called the nonlinear global
mode.

The dynamics of nonlinear global mode belongs to
weakly or fully nonlinear regime according to the size of
departure of bifurcation parameters from the criticality.9,14

Within small departure from the criticality, conventional
weakly nonlinear theory is applicable to analyze the global
instability. The region where the weakly nonlinear theory is
valid is called the weakly nonlinear regime but is narrow. In
this regime, nonlinear global mode strongly depends on the
dynamics of linear global mode and its spatial structure is
almost same as that of linear global mode. On the other hand,
when the departure from the criticality becomes sufficiently
large, weakly nonlinear theory is no more valid and the dy-
namics of nonlinear global mode is dominated by strong
nonlinearity. This region is called the fully nonlinear regime.
In this regime, the formation of nonlinear global mode is
closely related to the front propagation.4–14 When the distur-
bance is triggered by linear global instability, it nucleates a
front propagating into upstream. Then, the properties of this
propagating front at the trailing and leading edges of a non-

linear wavepacket are selected according to linear
criteria.7,13,14 When this front once stops at a location where
its velocity vanishes, it acts like a wavemaker generating
instability wave�s� downstream. Finally, the front and insta-
bility wave�s� generated form a nonlinear global mode.

Recently, the sensitivity of global instability that sheds
light on new aspects of global-instability dynamics has been
investigated in a few studies.14–16 All these studies were con-
ducted in the weakly nonlinear regime using linear global
mode, where the sensitivity of global instability was mea-
sured by that of the linear global mode and was determined
by overlapping region between the regular and adjoint linear
global modes. This approach was applied to flow behind a
circular cylinder near the onset of Kármàn vortex
shedding15,16 and the results showed good agreements with
the experiment17 in which the effect of a small secondary
cylinder located in the wake was studied. In spite of these
successful theoretical analyses in the weakly nonlinear re-
gime, the global instability belongs mostly to the fully non-
linear regime. However, the sensitivity of global instability
in the fully nonlinear regime has not been investigated so far.

Therefore, the objective of the present study is to inves-
tigate the sensitivity of nonlinear global mode in the fully
nonlinear regime and compare it to the sensitivity of linear
global mode. For this purpose, we consider the supercritical
real Ginzburg–Landau equation that is well established as a
simplified model in understanding the instabilities of open
shear flows such as the wake behind a bluff body,14
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= N�A� + �f��x − xf� + �c�x�A , �1a�
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with the boundary conditions of A�x=0�=A�x=��=0. Here,
x� �0,�� is the streamwise direction, t� �0,�� the time,
A�x , t��R the amplitude of instability wave, U�R the ad-
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vection velocity, and ��x� the control parameter, respec-
tively. ��x� is set to linearly depend on x, ��x�=�0−�1x,
where �0 controls the bifurcation of Eqs. �1a� and �1b� and
�1��0� represents a spatial nonparallelism of flow. In Eqs.
�1a� and �1b�, two types of small perturbations are included
to investigate the sensitivity of global instability: �f��x−xf�
is an open-loop perturbation provided at x=xf, and �c�x�A is
a closed-loop perturbation. The global instability of Eqs. �1a�
and �1b� occurs at �0=�c��U2 /4+ ��1��1

2/3�, where �1 is the

first zero of Airy function ��1=−2.338�.9 For �0��c, Eqs.
�1a� and �1b� are globally stable and have unique stable so-
lution A�x , t�=0 �basic state�, whereas for �0��c Eqs. �1a�
and �1b� become globally unstable and have a steady non-
trivial solution A�x , t�=ANG�x� called the nonlinear global
mode �bifurcated state�.9

Let us discuss how to measure of the sensitivity of glo-
bal instability. In Refs. 14–16, the sensitivity of global insta-
bility is described by the response of the linearized equation
about the basic state and the sensitivity of linear global fre-
quency. However, they are inadequate for the study of global
instability in the fully nonlinear regime because the linear
and weakly nonlinear theories based on linear global mode
are not valid in this regime. Therefore, we introduce a quan-
titative measure to evaluate the sensitivity of global instabil-
ity for both weakly and fully nonlinear regimes: the global-
mode energy, ENG=�0

�ANG
2 �x�dx, representing the energy of

saturated steady solution. To describe the effect of small per-
turbation on the global-mode energy, we introduce the sen-
sitivity of global-mode energy,

�ENG�w� = lim
�→0

ENG��w� − ENG�0�
�

, �2�

where ENG��w� is the global-mode energy perturbed by the
disturbances �w�=�f�+�cA� in Eq. �1a� and ENG�0� is the
global-mode energy without disturbances.

We first study the sensitivity of global instability of Eqs.
�1a� and �1b� in the weakly nonlinear regime. Using a stan-
dard multiple-scale analysis,18 for very small departure from
the criticality ��0−�c=���0�, the amplitude of instability
wave is expanded about A=0 as A�x , t�=�n=1

� �n/2	n�x , t ,T�
with an assumption that time evolution is very slow �T=�t�
and the amplitude of open-loop perturbation is small �f
=�1/2f0; f0=O�1��. Then, at O��1/2�, this expansion admits
the solution 	1�x , t ,T�=
�T��LG�x�e−i�Gt with ��LG

2 �x�dx=1,
where 
�T���0��R is the amplitude of global mode,
�LG�x��R is the linear global mode, and �G is the linear
global frequency and is zero at the criticality �i.e., �0=�c�.
At O���, the expansion does not provide any information
about the leading-order global mode, but at O��3/2� the solv-
ability condition leads the following Landau equation for

�T�:14
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 −
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3 ,�LG
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Here, a superscript  denotes the adjoint variable and 	g ,h

is the inner product �gh in �0,��.

The nonlinear global mode ANG in the weakly nonlinear
regime is the steady solution of A at O��1/2�: ANG�x�
=�1/2
s�LG�x�, where 
s is the nontrivial steady solution of
Eq. �3�. Thus, ENG���ANG

2 dx�=�
s
2. Then, under the as-

sumption of ��0�O�1� and 	�LG,�LG
+ 
� 	�LG

3 ,�LG
+ 
 �for

example, for U=2 and �1=0.033, 	�LG,�LG
+ 
=7.06�10−7

and 	�LG
3 ,�LG

+ 
=6.09�10−15�, the sensitivities of global-
mode energy with perturbations �f� and �cA become

�ENG�f�� � v−2/3f0�LG
+ �xf�2/3, �4a�

�ENG�cA� = v−1	c�x��LG,�LG
+ 
 , �4b�

where v= 	�LG
3 ,�LG

+ 
. From Eqs. �4a� and �4b�, the sensitivi-
ties in the weakly nonlinear regime are measured by the ad-
joint linear global mode �LG

+ and the overlapping region be-
tween regular and adjoint modes �LG�LG

+ , respectively. As
the sensitivity of linear global frequency is given as
	c�x��LG,�LG

+ 
 / 	�LG,�LG
+ 
 in Ref. 14, the sensitivity of

global-mode energy is directly related to that of linear global
frequency �see Eq. �4b��. When the linearized equation is
strongly non-normal, v becomes vanishingly small. Then, the
coefficient of cubic nonlinear term in Eq. �3� �called the Lan-
dau constant� also becomes very small because of vanish-
ingly small v. In this case, the nonlinear term cannot suffi-
ciently saturate the global mode and the bifurcation becomes
very steep. As a result, the region where the weakly nonlin-
ear theory is valid becomes vanishingly small.14 In addition,
the global instability also becomes extremely sensitive to the
perturbation because the sensitivities in Eqs. �4a� and �4b�
are inversely proportional to v2/3 and v, respectively.

Figure 1 shows the linear global mode
�LG�=�LG /��LG

2 dx�, adjoint linear global mode
�LG

+ �=�LG
+ /��LG

+2 dx�, and their overlapping region �LG�LG
+ in

the weakly nonlinear regime, where �LG=eU/2x Ai��1
1/3x

+�1�, �LG
+ =e−U/2x Ai��1

1/3x+�1�, and Ai�x� denotes the Airy
function.1,9 In the weakly nonlinear regime, the global mode
�LG�x� evolves sufficiently far downstream �Fig. 1�a��. On
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FIG. 1. Linear global mode and its sensitivities with the open- and closed-
loop perturbations in the weakly nonlinear regime �U=2 and �1=0.033�: �a�
�LG; �b� �LG

+ ; �c� �LG�LG
+ / �LG�LG

+ . Here  ·  denotes L2-norm.
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the other hand, the adjoint global mode �LG
+ representing the

sensitivity to open-loop perturbation �f� is concentrated
right after the inlet �0�x�5� �Fig. 1�b��. Thus, the overlap-
ping region �LG�LG

+ occurs at 0�x�15 �Fig. 1�c��, indicat-
ing that this region is the most sensitive to the closed-loop
perturbation �c�x�A.

Now, we investigate the sensitivity of global instability
in the fully nonlinear regime �i.e., �0−�c����0�. First, we
perform numerical simulation of Eqs. �1a� and �1b� to obtain
nonlinear global mode ANG�x�. Second-order central differ-
ence and fourth-order Runge–Kutta methods are used for
spatial discretization and time integration, respectively. The
computation domain is 0�x�150 with 15001 uniformly
spaced grid points and the Neumann condition �i.e., dA /dx
=0� is applied at x=150. ANG is obtained after A�x , t� be-
comes steady and is shown in Fig. 2�a�. According to Ref. 9,
ANG�x� consists of three main layers. The layer located right
after the inlet is called the Kolmogorov front layer �KFL�
that is known to act as a wavemaker of global instability. In
this layer, ANG�x� mainly consists of stationary Kolmogorov
front. The layer located right after KFL is the central nonlin-
ear layer �CNL�, where ANG�x�����x�. Finally, the tail of
ANG�x� is called the outer layer �OL�. For more details, see
Ref. 9.

The amplitude of instability wave perturbed by �f��x
−xf� and �cA is expanded about A=ANG as A�x�=ANG�x�
+��NG�x�+O��2�. Then, we obtain the following linearized
equation for �NG�x� �called the secondary-instability equa-
tion�:

�DN�A�
DA

�
ANG

�NG + f��x − xf� + c�x�ANG�x� = 0, �5�

where ��DN�A� /DA��ANG
is the linearized operator about

ANG and �NG�0�=�NG���=0. Using the method of varia-
tional calculus, �ENG is obtained as

�ENG�f�� = f�NG
+ �xf� , �6a�

�ENG�cA� = 	c�x�ANG,�NG
+ 
 , �6b�

where

�DN�A�
DA

�
ANG

+

�NG
+ �x� + 2ANG�x� = 0, �6c�

and �NG
+ �0�=�NG

+ ���=0. It is interesting to note that Eqs.
�6a� and �6b� are analogous to Eqs. �4a� and �4b�, respec-
tively, even though the method of evaluating the sensitivities
of global-mode energy in the fully nonlinear regime is essen-
tially different from that in the weakly nonlinear regime.
Thus, similar to Eqs. �4a� and �4b�, the sensitivities of
global-mode energy with �f��x−xf� and �c�x�A are measured
by the adjoint mode of secondary-instability equation �NG

+

and the overlapping region between the nonlinear global and
adjoint modes ANG�NG

+ , respectively.
Figures 2�b� and 2�c� show �NG

+ and ANG�NG
+ , respec-

tively. �NG
+ , representing the sensitivity to open-loop pertur-

bation �f�, is large right after the inlet �0�x�3� �Fig. 2�b��,
and ANG�NG

+ has large values in 0�x�5 �Fig. 2�c��. Note
that the maxima of �NG

+ and ANG�NG
+ are located in KFL,

indicating that KFL is responsible for the generation of glo-
bal mode. The present result qualitatively agrees with those
by Refs. 10 and 11 in which nonlinear Wentzel–Kramers–
Brillouin–Jeffreys theory is used to show that the Kolmog-
orov front plays the role of wavemaker. It is also noteworthy
that both �NG

+ and ANG�NG
+ are nearly constant in CNL and

have appreciable amplitudes unlike the linear global modes,
implying that the sensitivity is more spread out in the fully
nonlinear regime than it is in the weakly nonlinear regime,
particularly for closed-loop perturbations.

Now, we investigate the sensitivities of linear and non-
linear global modes with respect to the departure from the
criticality �0= ��0−�c� /�c. Figures 3�a� and 3�b� show
maxima of the sensitivities in the weakly and fully nonlinear
regimes, respectively. In the weakly nonlinear regime �Fig.

3�a��, maxima of v−2/3�LG
+2/3

and v−1�LG�LG
+ do not change

with �0 because �LG and �LG
+ are independent of �0. On the

other hand, in the fully nonlinear regime �Fig. 3�b��, both
maxima of �NG

+ and ANG�NG
+ decrease with increasing �0.

This result indicates that the nonlinear global mode in the
fully nonlinear regime becomes less sensitive to the pertur-
bation with increasing �0. Thus, the behavior of the sensitiv-
ity of nonlinear global mode in the fully nonlinear regime is
very different from that of linear global mode. On the other
hand, as shown in Figs. 1 and 2, the locations of maxima of
�LG

+ and �LG�LG
+ are similar to those of �NG

+ and ANG�NG
+ ,

indicating that the sensitive regions of linear global mode to
disturbances are analogous to those of nonlinear global mode
even in the fully nonlinear regime.

The variations of nonlinear global mode and its sensitivi-
ties with the departure from the criticality �0 in the fully
nonlinear regime are shown in Fig. 4. As �0 increases, ANG

increases and its maximum location moves upstream. On the
other hand, maxima of both �NG

+ and ANG�NG
+ located in KFL

rapidly decay with increasing �0 �see also Fig. 3�b��. This
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FIG. 2. Nonlinear global mode and its sensitivities with the open- and
closed-loop perturbations in the fully nonlinear regime �U=2, �0=1.8, and
�1=0.033� �a� ANG; �b� �NG

+ ; �c� ANG�NG
+ . Here, KFL denotes the Kolmog-

orov front layer, CNL the central nonlinear layer, and OL the outer layer,
respectively.
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indicates that the role of Kolmogorov front as a wavemaker
becomes less important when the departure is sufficiently far
from the criticality. In CNL, �NG

+ decreases with increasing
�0 but ANG�NG

+ is nearly constant, indicating that CNL is
almost insensitive to the variation of �0 for the closed-loop
perturbation. With increasing �0, the tails of both �NG

+ and
ANG�NG

+ move downstream and the width of CNL increases.
So far, the results from fixed values of the advection

velocity U and the spatial nonparallelism �1 were given in
this letter. Certainly, these parameters influence the nonnor-
mality of linearized operators about both the basic and bifur-
cated states and thus the characteristics of linear and nonlin-
ear global modes. Therefore, we tested a few different values
of U and �1 but the main findings described above did not
change.

In summary, we have investigated the sensitivity of glo-
bal instability in the weakly and fully nonlinear regimes. The
main conclusions from the present study are such that in the
fully nonlinear regime, �1� the sensitivity of global instability
is determined by nonlinear global mode and adjoint mode of
secondary-instability equation; �2� the Kolmogorov front
acts as a wavemaker of nonlinear global mode; �3� the sen-

sitive regions of nonlinear global mode are similar to those
of linear global mode in the weakly nonlinear regime; �4� the
role of Kolmogorov front as a wavemaker becomes less im-
portant for sufficiently large departure from the criticality.
Although the present results are obtained from a simplified
model equation, we hope that the present study will shed
light on the behavior of flows such as the instability in the
wake of a bluff body.
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