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Several metres below the coastal ocean surface there are areas of high ecological
activity that contain thin layers of concentrated motile phytoplankton. Gyrotactic
trapping has been proposed as a potential mechanism for layer formation of
bottom-heavy swimming algae cells, especially in flows where the vorticity varies
linearly with depth (Durham et al., Science, vol. 323(5917), 2009, pp. 1067–1070).
Using a continuum model for dilute microswimmer suspensions, we report that an
instability of a gyrotactically trapped cell layer can arise in a pressure-driven plane
channel flow. The linear stability analysis reveals that the equilibrium cell-layer
solution is hydrodynamically unstable due to negative microswimmer buoyancy (i.e.
a gravitational instability) over a range of biologically relevant parameter values. The
critical cell concentration for this instability is found to be Nc ' 104 cells cm−3, a
value comparable to the typical maximum cell concentration observed in thin layers.
This result indicates that the instability may be a potential mechanism for limiting
the layer’s maximum cell concentration, especially in regions where turbulence is
weak, and motivates the study of its nonlinear evolution, perhaps, in the presence of
turbulence.

Key words: bioconvection

1. Introduction

Oceanographic studies have shown that near coastal regions long and thin layers
of phytoplankton form several metres beneath the surface and persist for days
(Nielsen, Kiørboe & Bjørnsen 1990; Dekshenieks et al. 2001; Stacey, McManus
& Steinbuck 2007; Sullivan, Donaghay & Rines 2010). These layers have cell
concentrations orders of magnitude higher than ambient values (Sullivan et al. 2010)
and are ecological hot spots that significantly contribute to species diversity in marine
environments (Grünbaum 2009). Their thickness ranges from a few centimetres to
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a few metres and they can extend horizontally for kilometres (Dekshenieks et al.
2001; Moline et al. 2010). These layers often emerge in areas where turbulence is
considerably weak or highly suppressed by surrounding flow conditions (e.g. density
stratification) (Dekshenieks et al. 2001). A number of mechanisms have been proposed
for layer formation, and they include convergent swimming originating from ‘taxes’
of motile phytoplankton (MacIntyre, Cullen & Cembella 1997; Grünbaum 2009; Ryan,
McManus & Sullivan 2010), vertical stratification in oceans, especially at pycnoclines
(Dekshenieks et al. 2001; Johnston & Rudnick 2009), straining by shear (Franks
1995; Osborn 1998; Stacey et al. 2007) and gyrotactic trapping (Durham, Kessler &
Stocker 2009). The reader may refer to Durham & Stocker (2012) for a review on
this issue.

Of particular interest to the present study is the mechanism of gyrotactic trapping,
which has been proposed for green algae, like those of genus Chlamydomonas or
Dunaliella (Durham et al. 2009). These microorganisms are commonly observed in
lakes, seas and oceans (Ginzburg & Ginzburg 1985; Similä 1988; Krivtsov, Bellinger
& Sigee 2000) and they exhibit sensitivity to gravity (Kessler 1984). This is the
consequence of bottom heaviness originating from the fact that the centre of mass of
the cell is displaced from that of buoyancy. This displacement results in a gravitational
torque causing the cell to swim upwards (Kessler 1985). In the presence of shear,
however, such a cell also experiences a viscous torque due to the vorticity of the
flow, and the swimming direction is then determined by the balance between the
gravitational and viscous torques (i.e. gyrotaxis). In particular, if the shear is very
large, the cell continuously tumbles (Pedley & Kessler 1987) and gradually loses its
upswimming velocity on average.

Durham et al. (2009) proposed that an excessively large shear (or vorticity) disrupts
the upswimming of large numbers of gyrotactic cells, thereby leading to the formation
of a thin layer in the region of large shear (i.e. gyrotactic trapping). To demonstrate
this mechanism, they performed a laboratory experiment where a flow with an
approximately linearly growing shear rate is applied to a suspension of gyrotactic
cells (Chlamydomonas nivalis and Heterosigma akashiwo) with 1 cm depth. It was
shown that a thin layer of cells is indeed formed by the proposed mechanism.
However, the layer was also found to be highly unsteady and exhibit non-trivial
dynamics in the sense that the formation of the layer is highly transient (see also
the numerical study by Santamaria et al. 2014), even though the background flow
itself remained laminar and steady (private communication with W. M. Durham).
In bioconvection, a thin layer is formed at the upper fluid boundary due to the
upswimming of the cells. This layer has been found to become unstable as the high
cell concentration causes gravitational overturning, which in turn causes a convection
pattern to arise (see, for example, Pedley, Hill & Kessler 1988; Pedley & Kessler
1992; Bees & Hill 1997). Similarly, the thin layers formed in the suspension by
gyrotactic trapping are suspected to exhibit a similar instability, which may explain
the highly unsteady layer dynamics observed in experiments.

The objective of the present study is to examine the stability of layers formed by
gyrotactic trapping using the continuum model described in Pedley (2010) and Hwang
& Pedley (2014a). To this end, we consider a suspension of gyrotactic microorganisms
subject to a horizontal plane Poiseuille flow which has a shear rate (or vorticity) that
grows linearly in the vertical direction, as in the experiments by Durham et al.
(2009). To some extent, this flow configuration appears to be similar to that of the
experiment by Croze, Ashraf & Bees (2010) in which a horizontal pipe Poiseuille flow
was applied to a suspension of C. augustae. However, unlike the pipe flow, the shear
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in horizontal plane Poiseuille flow is purely vertical, and we will see that this flow
geometry admits a steady equilibrium solution in the form of a gyrotactically trapped
cell layer. This is the important physical feature which distinguishes the present
study from the work by Croze et al. (2010) as well as the one by Hwang & Pedley
(2014a) which studied the role of uniform shear in bioconvection: the pressure-driven
channel flow has an equilibrium solution corresponding to a gyrotactically trapped
cell layer whose stability can then be assessed. Finally, it is worth mentioning that the
layer formation in the plane Poiseuille flow of gyrotactic microorganism suspensions
is reminiscent of that found for bacterial suspensions in a microfluidic channel
(Rusconi, Guasto & Stocker 2014). However, the underlying mechanism for the layer
formation between the two cases is fundamentally different.

2. Problem formulation

2.1. Equations of motion
The mathematical model and its stability analysis in the present study are based
on those described in Hwang & Pedley (2014a). This model is derived from the
Navier–Stokes equations combined with a Smoluchowski equation describing the
cell distribution in time, space and cell-orientation space. The model adopts the
translational diffusivity expression proposed by Pedley & Kessler (1990), although
this can be improved by the generalised Taylor’s dispersion theory (for example,
Hill & Bees 2002). In our presentation here, we have omitted repeated details for
brevity. Suppose we have a fluid of density, ρ, and kinematic viscosity, ν, in an
infinitely long and infinitely wide channel, subject to a constant pressure gradient in
the horizontal direction. Here, we denote x∗, y∗ and z∗ as the streamwise, vertical
and spanwise directions, respectively, and t∗ as the time (note that the superscript ∗
denotes dimensional variables). The two walls of the channel are located at y∗ =±h,
where h is half-height of the channel. In this horizontal channel there is a suspension
of spherical gyrotactic cells with average cell-number density, N. The individual
cell is assumed to swim at speed V∗c and is subject to gravity, as well as diffusion.
The cell sedimentation speed is given by V∗s , and, as we shall see in § 3.1, plays
a crucial role in the formation of the gyrotactically trapped equilibrium layer. The
swimming direction of the cells is denoted by a unit vector, e = (e1, e2, e3), and
their sedimentation direction is −j (where j is the upward unit vector in the vertical
direction). As shown in Pedley & Kessler (1990), the translational diffusivity of
the suspension scales like V∗c

2τ , where τ is the swimming direction correlation
time. We use this as the representative value for translational diffusivity, such that
DV ≡ V∗c

2τ . Using the length scale h, the diffusion velocity scale DV/h, and the
average cell-number density N, the dimensionless equations of motion are:

∇ · u= 0, (2.1a)

Sc−1

(
∂u
∂t
+ (u · ∇)u

)
=−∇p+∇2u− Ra nj, (2.1b)

∂n
∂t
+∇ · [n(u+ Vc〈e〉 − Vs j)] =∇ · (DT · ∇n), (2.1c)

with the no-slip and no-flux boundary conditions on the walls

u|y=±1 = (0, 0, 0), (2.1d)
[n(u+ Vc〈e〉 − Vs j)− DT · ∇n]|y=±1 · j= 0, (2.1e)
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where u(= (u, v,w)), p, n, Vc, Vs and DT (≡ 〈ee〉 − 〈e〉〈e〉; see also Pedley & Kessler
(1990) for this expression), are the dimensionless velocity, pressure, cell-number
density, cell-swimming speed, cell sedimentation speed, and translational diffusivity
tensor, respectively. The Schmidt number Sc and the Rayleigh number Ra in (2.1b)
are given by

Sc=
ν

DV
and Ra=

Nυg′h3

DVν
, (2.1f ,g)

where g′ = g1ρ/ρ is the reduced gravity (1ρ is the density difference between the
cell and fluid) and υ the volume of a cell. In (2.1c) and (2.1e), 〈·〉 denotes the local
ensemble average at given spatial location x, which is obtained with the p.d.f. of the
cell-swimming orientation, f (x, e, t). This satisfies

D−1
R
∂f
∂t
+D−1

R (u · ∇)f +∇e ·

(
λ(j− (j · e)e)f +

Ω

2DR
× ef

)
=∇

2
e f , (2.1h)

where Ω is the flow vorticity. Here, the dimensionless rotational diffusivity DR and
the dimensionless inverse of the gyrotactic time scale λ are also given by

DR ≡
D∗Rh2

DV
and λ=

1
2BD∗R

, (2.1i,j)

with the rotational diffusivity D∗R and the gyrotactic time scale B.

2.2. Basic state
Given the horizontal homogeneity of the flow, equation (2.1) admits the following
equilibrium solution:

u0(y)= (U0(y), 0, 0), n= n0(y), (2.2a)

where

U0(y)= ScRe(1− y2), (2.2b)

n0(y)=N0 exp
(∫

Vc〈e2〉0 − Vs

D22
T0

dy
)
. (2.2c)

Here, Re=Uch/ν is the Reynolds number based on the centreline velocity Uc, and N0
is the normalisation constant setting the volume average of n0(y) to be unity. Also, in
(2.2c), 〈·〉0 is obtained from the steady and horizontally uniform solution f0 of (2.1h):
i.e.

∇e ·

(
λ(j− (j · e)e)f0 +

Ω0

2DR
× ef0

)
=∇

2
e f0, (2.2d)

where Ω0 = (0, 0,−ScRe(dU0/dy)).
In the regime of high shear rates, one may estimate the formation time scale

of the basic state from an initially uniform suspension. In this case, the effect of
the upswimming velocity would be negligible due to very high surrounding shear.
Therefore, the time scale for layer formation will be given by the length scale of the
system and translational diffusivity, such that

Tlayer ∼
h2

D∗V
=

(0.25)2

1.98× 10−4
≈ 300 s. (2.3)
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2.3. Linear stability analysis
Now, let us consider a small perturbation around the basic state, such that:
[u n f ]T = [u0 n0 f0]

T
+ ε[u′ n′ f ′]T +O(ε2) for ε� 1. The normal-mode solution of

the perturbation is then written as

[u′ n′ f ′]T(x, y, z, t)= [û n̂ f̂ ]Tei(αx+βz−ωt)
+ c.c, (2.4)

where ω is the unknown complex angular frequency, and α and β are the given
streamwise and spanwise wavenumbers, respectively. Using the standard procedure
that eliminates pressure perturbation, the vertical velocity and vorticity form of the
linearised equations of motion are given by

iω

Sc−1(k2
−D2) 0 0

0 Sc−1 0
0 0 1

v̂η̂
n̂

=
 LOS 0 k2Ra

iβReDU LSQ 0
Dn0 + LvC LηC LC

v̂η̂
n̂

 , (2.5a)

where

LOS = iαReU(k2
−D2)+ iαReD2U + (k2

−D2)2, (2.5b)
LSQ = iαReU + (k2

−D2), (2.5c)
LC = iαScReU + iαVc〈e1〉0 + (Vc〈e2〉0 − Vs)D+ iβVc〈e3〉0 + VcD〈e2〉0

+α2D11
T0 − 2iαD12

T0D−D22
T0D2
+ β2D33

T0 − iαDD12
T0 −DD22

T0D, (2.5d)

LvC =
[

G1Dn0
ξ2

k2
iα + n0G1

(
−α2 ξ1

k2
+Dξ2

iα
k2
+
ξ2

k2
Diα + β2 ξ3

k2

)
−G2

(
iα
ξ6

k2
D2n0 +Dn0

(
−α2 ξ5

k2
+Dξ6y

iα
k2
+
ξ6

k2
Diα + β2 ξ7

k2

))]
(k2
−D2),

(2.5e)

LηC = G1Dn0
ξ2

k2
iβD+ n0G1

[(
Dξ2

iβ
k2
+
ξ2

k2
Diβ − αβ

ξ3

k2
− αβ

ξ1

k2

)
D+ ξ4iβ

]
−G2

[
Dn0

(
ξ8iβ +

(
−αβ

ξ5

k2
+

iβ
k2
Dξ6 +

ξ6

k2
Diβ − αβ

ξ7

k2

)
D
)
+ iβ

ξ6

k2
D2n0D

]
,

(2.5f )

with the boundary conditions

v̂|y=±1 =Dv̂|y=±1 = η̂|y=±1 = 0, (2.5g)

[(
Vc〈e2〉0 − Vs − iαD12

T0

)
n̂−D22

T0Dn̂+ (G1ξ2n0 −G2ξ6Dn0)

×

(
iα
k2
(k2
−D2)v̂ +

iβ
k2
Dη̂
)]

y=±1

= 0. (2.5h)

Here, D = d/dy, k2
= α2

+ β2, η̂ = iβû − iαŵ, and ξi are coefficients obtained in
Hwang & Pedley (2014a) by applying a quasi-steady and quasi-uniform approximation
to the linearised equation for f ′. We note that this approximation would be valid
as long as the instability does not carry a flow perturbation with very small time

868 R5-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

22
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 Im

pe
ri

al
 C

ol
le

ge
 L

on
do

n 
Li

br
ar

y,
 o

n 
15

 A
pr

 2
01

9 
at

 1
3:

41
:4

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2019.227
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


S. Maretvadakethope, E. E. Keaveny and Y. Hwang

Parameter Description Reference value

Sc Schmidt number 50.39
Ra Rayleigh number 100–104

G1 See text 0.38
G2(= 1/DR) See text 0.05
λ Inverse of dimensionless gyrotactic time scale 2.2
Re Reynolds number of base-flow shear 0–6.28
Smax Maximum shear rate normalised by D∗R 0–30

TABLE 1. Dimensionless parameters in the present study.

and length scales (Hwang & Pedley 2014a). Fortunately, in laminar flows, such a
perturbation would be damped by viscosity and diffusivity. In (2.5), G1 = Vc/DR and
G2 = 1/DR, and they indicate the relative importance of the cell-swimming velocity
and translational diffusion to rotational diffusion, respectively.

The eigenvalue problem (2.5) is solved numerically by modifying the numerical
solver used in Hwang & Pedley (2014a). Here, the derivatives in the vertical direction
are discretised using a Chebyshev collocation method and, in the present study, all
computations were carried out with 101 collocation points (i.e. Ny = 101). We also
note that no discernible changes were found for several test cases when increasing to
Ny = 201.

2.4. Model parameters
The depth of the channel in the present study is chosen to be d(≡ 2h) = 0.5 cm,
which is comparable to that used in Durham et al. (2009) (d = 1 cm). The range of
the centreline velocity Uc tested in the present study is Uc = 0–0.25 cm s−1, leading
to Re = 0–6.28. The onset of gyrotactic trapping is strongly linked to the base-flow
vorticity at which an isolated cell will begin to tumble. For a given dimensionless
gyrotactic time scale λ, such a vorticity can be calculated either in terms of the
gyrotactic time scale B or in terms of the rotational diffusivity D∗R. The critical
spanwise vorticity (made dimensionless by the rotational diffusivity) at which a cell
undergoing no random motion begins to tumble is Scrit = 4.4, where the spanwise
vorticity of the base flow is defined as

S(y)=−
ScRe
D∗R

dU0

dy
. (2.6)

We note that (2.6) is useful in characterising the flow rate in relation to the cell
dynamics. Using (2.6), the base-flow rate can be characterised by the maximum
spanwise vorticity,

Smax ≡max
y

S(y), (2.7)

for which S(y)= Smax(= 2ScRe/DR) is attained at the upper wall (i.e. y= 1).
All the model parameters for the individual cells in the present study (e.g.

swimming speed, sedimentation speed, cell volume, etc) are those for C. nivalis.
The range of the averaged cell-number density considered in the present study is
N = 1× 103–1× 107 cells cm−3, which comfortably includes 1.1× 106 cells cm−3 in
the experiment of Durham et al. (2009). Given the flow geometry and the parameters
for the cell, this results in Ra= 100–104. All the dimensionless parameters examined
in the present study are summarised in table 1.
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300 400 0 0.5 1.0

FIGURE 1. Profiles of the basic state with Smax = 0, 11, 20, 30: (a) base flow; (b) cell-
number density normalised by its maximum.

3. Results and discussion

3.1. Basic state
The base flow and the corresponding cell-number density distribution are plotted
in figure 1(a,b), respectively. As Smax is increased, the centreline velocity simply
increases while maintaining the parabolic profile. In contrast, the profile of the
cell-number density experiences non-trivial changes with the increase of Smax. To
explain this feature, we start by making a few observations. First, for a excessively
large spanwise vorticity, the average upswimming speed of the cells should become
smaller than the sedimentation speed, because the upswimming speed Vc〈e2〉0
approaches zero in the limit of infinitely large vorticity (see figure 3a in Hwang
& Pedley 2014a). In other words, Vc〈e2〉0 6Vs for S(y)> Ss, where Ss is the spanwise
vorticity at which Vc〈e2〉0=Vs. Note that, for the given modelling parameters, Ss' 11
(figure 7 in Hwang & Pedley 2014a). Second, the form of n0(y) in (2.2c) indicates
that the sign of Vc〈e2〉0− Vs should be identical to that of dn0/dy. It follows that the
peak location of n0(y) is identical to the location where S(y) = Ss (or equivalently
Vc〈e2〉0 = Vs), suggesting the crucial role of the sedimentation speed in the gyrotactic
trapping even if it is significantly smaller than the cell-swimming speed (note that
Vs ' 0.1Vc; see Pedley 2010).

Keeping these observations in mind, let us now observe n0(y) in figure 1(b) again.
For Smax=0, n0(y) is simply an exponentially growing function in the vertical direction
because 〈e2〉0 and D22

T0 in (2.2c) are constant. When Smax= 11, S(y= 1)' Ss. Therefore,
dn0/dy' 0 at y= 1. If Smax is increased further (Smax= 20), the peak location of n0(y),
at which S(y)= Ss, now emerges in the region of 0< y< 1, exhibiting an equilibrium
layer of the cells formed by the gyrotactic trapping. With a further increase of Smax,
the peak location of n0(y) is shifted further downwards, as is shown for Smax = 30.

3.2. Linear stability analysis
A linear stability analysis of the basic states in § 3.1 is now performed. The contours
of the growth rate ωi of the most unstable spanwise uniform (β = 0) mode in the
Ra–α plane are shown in figure 2 for Smax= 0, 11, 20 and 30. For Smax= 0 (figure 2a),
the neutral stability curve and the contour plot are identical to those for stationary
bioconvection in Bees & Hill (1998) and Hwang & Pedley (2014a). On increasing
Smax, the instabilities at high streamwise wavenumbers (α > 20) are significantly
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FIGURE 2. Contours of the growth rate ωi of the most unstable mode in the Ra–α plane
for β = 0: (a) Smax = 0; (b) Smax = 11; (c) Smax = 20; (d) Smax = 30.

damped, while the low-wavenumber region (α < 20) is destabilised (figure 2b–d).
This tendency observed with increasing maximum base-flow vorticity is fairly similar
to that in the uniform shear flow (Hwang & Pedley 2014a). However, it should
be mentioned in that case, even the low-wavenumber region was also found to be
completely stabilised once Smax > Ss, whereas, in the present study, the region remains
unstable even when Smax is roughly three times greater than Ss. Qualitatively, the
same feature appears for the streamwise uniform instability mode (α = 0), as shown
in figure 3. The only difference between this case and the spanwise uniform case
is that the streamwise uniform mode exhibits higher growth rates at low spanwise
wavenumbers (β < 20) as Smax increases.

3.3. Physical mechanism of the instability
To understand the origin of the persistent instability, even at a considerably large
base-flow vorticity, we first explore how the basic-state cell-number density profile
is correlated with that of the eigenfunction of the instability mode. Figure 4 shows
the basic-state cell-number density (a,c,e,g) and the cross-streamwise structure of the
most unstable eigenmode (b,d,f,h) for α = 0, β = 10 and Ra = 2000. As explained
previously, the maximum n0, which indicates the position of the cell layer formed
by the gyrotactic trapping, shifts downwards with increasing Smax. Interestingly, the
vertical location, in which the eigenmode appears in the form of counter-rotating rolls
with the corresponding cell-number density field, also moves downwards together with
the peak location of n0. Furthermore, for all Smax considered here, the eigenmode
of the instability consistently emerges in the region where the basic cell-number
density is unstably stratified (i.e. dn0/dy> 0), suggesting that the instability would be
associated with the gravitational overturning mechanism observed in Rayleigh–Bénard
convection and the Rayleigh–Taylor instability.
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FIGURE 3. Contours of the growth rate ωi of the most unstable mode in the Ra–β plane
for α = 0: (a) Smax = 0; (b) Smax = 11; (c) Smax = 20; (d) Smax = 30.

The precise mechanism of the instability persisting at large Smax is further
investigated by carefully examining each term of (2.5). Four different physical
mechanisms of instability are identified in the present case: (1) gravitational instability
(Dn0 in the third row of (2.5a)); (2) gyrotactic instability (all the terms with G1 in
(2.5e) and (2.5f )); (3) diffusion-oriented instability (all the terms with G2 in (2.5e)
and (2.5f )); (4) instability caused by the spatial gradient of cell-swimming vector
field (VcD〈e20〉0 in (2.5d)). The first three mechanisms here were previously shown
to play almost equally important roles in bioconvection instability (Hwang & Pedley
2014a), while the last one was shown to be the central mechanism for the blip
instability in downward channel flow (Hwang & Pedley 2014b). Given the scope
of the present study for the instability of gyrotactic trapping, here we focus on the
instability emerging for Smax > Ss. In such a case, the spanwise vorticity of the base
flow would be fairly large in most of the vertical domain, and this yields all ξi in
(2.5) fairly small (the values of ξi quickly diminish to zero as S(y)→∞; see figure 6
in Hwang & Pedley 2014a). We note that the ξi appear with G1 and G2 throughout
(2.5), indicating that the gyrotactic and diffusion-oriented mechanisms are unlikely to
be very active for Smax > Ss.

The discussion given above now suggests that the potential instability mechanism
of the layer formed by gyrotactic trapping would originate from the gravitational
mechanism and/or the one by the spatial gradient of cell-swimming vector field. To
check this, we perform a numerical experiment for Ra = 2000 and Smax = 20, in
which linear stability is examined by suppressing each of the terms discussed above
individually. As shown in figure 5, the dominant contribution of the instability is
made by the term associated with the gravitational mechanism (i.e. Dn0 in the third
row of (2.5a)), as its suppression leads to complete stabilisation. However, the one
from the spatial gradient of cell-swimming vector field is found to play no role
because its suppression hardly changes the growth rate, suggesting that the dominant
instability mechanism in the present study is the gravitational one.
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FIGURE 5. Examination of the instability mechanisms for Smax= 20 and Ra= 2000: (a) ωi
versus α with β = 0; (b) ωi versus β with α = 0.

4. Concluding remarks

Our study indicates that while a layer of bottom-heavy cells formed by gyrotactic
trapping is indeed an equilibrium solution to the continuum equations describing such
a suspension, this layer is also linearly unstable. The high shear rate (Smax > 20)
critical Rayleigh number for this instability is two orders of magnitude lower than
that for typical bioconvection. This implies that the gyrotactically trapped layer
would be unstable at fairly low cell concentrations. In a suspension for the depth
d(= 2h)= 0.5 cm, bioconvection occurs at N ' 106 cells cm−3. Based on our results,
a gyrotactically trapped layer would be unstable only at N ' 104 cells cm−3 for the
same depth. It is interesting to note that this value of the cell concentration for
the onset of the instability is fairly close to the N ' 103–104 cells cm−3 observed
in thin layers at Monterey Bay (Jiménez et al. 1987; Steinbuck et al. 2009). As
mentioned in the introduction, the thin layers of phytoplankton often develop in
regions where turbulence is suppressed by strong density stratification (Dekshenieks
et al. 2001). This suggests that the instability observed in the present study might be
a mechanism that limits the cell concentration of thin layers in aqueous environments
where turbulence is weak. The physical mechanism of this instability is also robust –
as in bioconvection, it is a simple gravitational instability caused by the dense layer
formed by gyrotactic trapping. Ecologically, it is unclear why the cells would exhibit
such collective behaviour. However, this might be an evolutionary outcome that the
cells have developed to prevent the development of high concentrations. High cell
concentrations could lead to a competitive environment for nutrient uptake, and could
weaken cell-swimming capabilities through hydrodynamic interactions between nearby
cells, leaving the population susceptible to predators.

Despite this encouraging comparison, in the experiment of Durham et al. (2009),
the formation of gyrotactically trapped cell layers was observed in a ‘time-averaged’
sense even for N ' 106 cells cm−3 (see figure 2a in Durham et al. 2009). In light
of our current findings, this observation suggests the importance of the nonlinear
evolution of the instability, especially as a function of the averaged cell-number
density. It is certainly possible that the instability is not strong enough at low
average cell-number densities (or Rayleigh numbers) to strongly disturb the layer
formed by gyrotactic trapping. In other words, at low averaged cell-number densities,
the relatively weak instability may give rise to unsteady layer dynamics (as was
also confirmed by private communication with W. M. Durham) with an overall
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time-averaged shape. Notwithstanding, there may be a more intricate interplay
between cellular gyrotaxis and the evolution of the cell-layer instability that can
only be ascertained through an exploration of the fully nonlinear regime. This can
probably be studied with classical weakly nonlinear stability analysis as well as with
full-nonlinear simulations of the continuum model. Performing more extensive and
carefully controlled experiments on this issue would also be highly desirable.

Finally, the typical thickness of the layer formed by gyrotactic trapping would
be estimated by l ∼ Dv/V∗c . For C. nivalis, l ∼ O(0.1–1 mm) (Pedley 2010, see
also figure 1a) and the time scale of the instability would be greater than O(1 s)
for N < 106 cells cm−3 (figure 5). We note that the typical Kolmogorov length
and time scales in oceans are η ∼ O(0.1–10 mm) and τη ∼ O(0.1–102 s) (Durham
et al. 2013). This implies that turbulent mixing in oceans would easily disrupt the
layer formation process as well as its instability, consistent with the observation by
Dekshenieks et al. (2001). However, precisely to what extent and how this would
happen needs to be understood. Other interesting avenues for further research would
also include the role of hydrodynamic interactions as well as the effects of changes
in the swimmers’ physical properties (shape, distribution of mass, rigidity of the
body). The hydrodynamic interactions between the cells can alter the precise shape
of the layer, as they would impact on the diffusivity and rheology of the suspension
(Ishikawa & Pedley 2007). The shape of the cell can also affect the dynamics of the
suspension. For example, the layer may form at lower shear rates for elongated cells
due to enhanced sedimentation by the vertical shear (Clifton, Bearon & Bees 2018).
The instability for such a layer also deserves a future investigation.
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